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Abstract

The challenge of modeling low-speed rarefied gas flow in the transition regime is well known. In this paper, we propose
a numerical solution procedure for the regularized 13 moment equations within a finite-volume framework. The stress and
heat flux equations arising in the method of moments are transformed into the governing equations for the stress and heat
flux deviators based on their first-order approximation. To model confined flows, a complete set of wall boundary condi-
tions for the 13 moment equations are derived based on the Maxwell wall-boundary model. This has been achieved by
expanding the molecular distribution function to fourth-order accuracy in Hermite polynomials. Empirical correction fac-
tors are introduced into the boundary conditions and calibrated against direct simulation Monte Carlo data. The numer-
ical predictions obtained from the regularized 13 moment equations and the Navier–Stokes–Fourier equations are
compared with data generated using the direct simulation Monte Carlo method for planar Couette flow. For a range
of wall velocities and Knudsen numbers (0.012–1.0), the results indicate that the regularized 13 moment equations are
in good qualitative agreement with the direct simulation Monte Carlo data. The results also highlight limitations that
are caused by the use of a first-order expansion of the third moment.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The degree of rarefaction of a gas is generally expressed through the Knudsen number ðKn ¼ k=LÞ which is
the ratio of the molecular mean free path, k, to a typical dimension of the flow field, L. The Boltzmann equa-
tion [1] provides an accurate description of a dilute gas at all degrees of rarefaction and describes its state
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through a molecular distribution function that treats the gas as a large number of interacting molecules, col-
liding and rebounding according to prescribed laws. Solutions of the Boltzmann equation, either directly [2] or
through the direct simulation Monte Carlo (DSMC) method [3], entail significant mathematical complexity
and can be computationally expensive, particularly for low-speed, low Knudsen number flows in the slip
(Kn < 0.1) and transition ð0:1 6 Kn < 10Þ regimes. These flows are often found in micro-electro-mechanical-
systems (MEMS) [4,5].

Due to the difficulties associated with solving the Boltzmann equation, there is significant effort being made
to construct alternative solution strategies that can provide an accurate description of a gas with Knudsen
numbers that extend into the transition regime. For designing components in MEMS, it is desirable that
any new developments have: (i) computational efficiency comparable to conventional hydrodynamic formu-
lations; (ii) the ability to handle real geometries, and (iii) under appropriate conditions, will recover the
Navier–Stokes–Fourier solution. The two main approaches used to derive these extended hydrodynamic
(EHD) equations are the Chapman–Enskog expansion [6] and the method of moments developed by Grad [7].

The Chapman–Enskog approach expands the molecular distribution function in powers of Kn to construct
the constitutive relationships. The zeroth-order expansion yields the Euler equations and the first-order results
in the Navier–Stokes equations. Higher order expansions yield the Burnett equations (second-order), Super-
Burnett equations (third-order), and so on. It is expected that the higher the expansion order is, the resulting
set of equations will provide an improved description of any departures from the equilibrium state. However,
Grad [8] argued that no matter how high the expansion order is, the resulting system will only describe flows
that are already close to the continuum solution. Furthermore, the higher-order equations become linearly
unstable and are not suitable for numerical simulation of processes involving small wavelengths [9]. Several
researchers [10,11] have presented augmented forms of the second-order constitutive relationship to stabilize
the Burnett equations.

In Grad’s approach [7], a governing set of partial differential equations representing the moments of the
molecular distribution function are derived from the Boltzmann equation. However, moments of higher
order always appear in each moment equation and the set of moment equations is not closed. To avoid
the necessity of dealing with an infinite number of moment equations, a closure procedure is required that
relates the higher-order moments to those of lower order. In the seminal work of Grad [7], the set of
moment equations was closed at the second-moment level, which involves 13 moments: density, momentum,
energy, heat flux, and pressure deviator. It is interesting to point out that the constitutive relationships
established by the Chapman–Enskog method, at any order, can be regarded as a first moment closure
method with 5 moments [3]. To close the set of moment equations at the second-moment level, Grad [7]
expanded the distribution function in Hermite polynomials about the local Maxwellian to third-order accu-
racy and set the trace-free part of the third moments to zero. As a result, the original set of 13 moment
equations derived by Grad (G13) is hyperbolic and lacks any gradient transport mechanism. They are
not suitable for computing boundary layers or predicting shock structures above a Mach number of 1.65
[12].

Recently, Struchtrup and Torrilhon [13] regularized Grad’s 13 moment equations (R13) by applying a
Chapman–Enskog like expansion to the governing equations of the moments higher than second order. Alge-
braic constitutive relationships were then established between the higher moments and the second and lower
moments. This important procedure introduces gradient transport terms into the second moment equations
and changes their character from hyperbolic to parabolic. Subsequently, Struchtrup [14,15] used an order-
of-magnitude approach to achieve a similar closure. In contrast, Jin and Slemrod [16] used a visco-elastic reg-
ularization procedure to develop a relaxed Burnett system through a relaxation of the pressure deviator and
the heat flux. This approach leads to a stable set of 13 governing equations that are weakly parabolic and a
detailed comparison between the R13 equations and Jin and Slemrod’s regularization has been given by
Struchtrup [17]. The shock structures computed with Struchtrup and Torrilhon’s closure are smooth and in
quantitative agreement with DSMC simulations for Mach numbers up to 3.0 [17,18]. However, to apply this
set of moment equations to confined flows, such as those found in microfluidic channels, wall boundary con-
ditions are required. No complete set of wall boundary conditions for the 13 moment equations have appeared
in the literature, and this hampers the application of the moment method in MEMS and other confined rar-
efied gas flows.
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To construct wall boundary conditions for the governing moment equations, a scattering kernel is needed
that describes the gas–surface interaction [19]. This paper presents a complete set of wall boundary conditions
for the 13 moment equations that have been derived using the Maxwell wall-boundary model [20] and expand-
ing the distribution function in Hermite polynomials to fourth-order accuracy. As only a finite number of
moments are involved in the approximated molecular distribution function, empirical correction factors are
required that will account for any Knudsen layer effects [1]. The values of the empirical correction factors
are determined from a set of numerical experiments obtained from DSMC studies of planar Couette flow
which, although geometrically simple, exhibits all the essential rarefaction effects as the Knudsen number
increases. The DSMC data obtained in the present study cover a range of Knudsen numbers and wall veloc-
ities and has been used to calibrate and validate the new wall boundary conditions. Moreover, the computed
values of the moments are compared with those obtained from the DSMC simulations and the validity of the
proposed closure is discussed.

To numerically solve the 13 moment equations for parabolic and elliptic flows within a conventional
CFD approach, such as the finite volume (FV) method, is quite challenging because the gradient transport
mechanisms are not explicitly expressed in the momentum and energy equations of the moment system. The
inadequacy of the standard FV method for the governing equations without any gradient transport terms is
well recognized [21], so that methods for dealing with hyperbolic problems are required, such as Riemann
solvers [22], TVD schemes [23] and ENO schemes [24] for capturing discontinuities. For high speed flows,
Jin et al. [25] developed a one-dimensional non-oscillatory numerical scheme and successfully predicted
shock structures up to Mach 10 with the relaxed Burnett system [16]. These schemes are complex and com-
putationally expensive for multidimensional confined flow, particularly at low speed. This paper proposes a
solution strategy for the R13 equations which is able to employ conventional FV techniques associated with
elliptic flow problems. In our approach, the stress and heat flux equations in the R13 system are trans-
formed into the governing equations for the stress and heat flux deviators from their first-order approxima-
tions, respectively. They can then be solved numerically by coupling with the momentum and energy
equations.

In Section 2, Grad’s method of moments and Struchtrup and Torrilhon’s second-moment closure are
briefly described. In the subsequent section, the molecular phase-density distribution function is expanded
in Hermite polynomials to fourth-order accuracy about an equilibrium distribution. A complete set of wall
boundary conditions for the 13 moment equations are presented in Section 4 based on this polynomial expan-
sion and Maxwell’s wall-boundary model. In Section 5, the numerical strategy is discussed and results
obtained from the NSF and R13 equations for planar Couette flow, covering a range of Knudsen numbers,
are presented in Section 6 and compared with DSMC data.

2. Method of moments and second-moment closure

Kinetic theory accounts for a molecule’s movement and interaction through a molecular phase-density dis-
tribution function, F ðn; x; tÞ, which satisfies the Boltzmann integro-differential equation [1], where x and n are
the position and velocity vectors, respectively, of a molecule at time t, and F ðn; x; tÞdx dn gives the number of
molecules whose velocities lie within dn in a volume element dx. For convenience, a mass distribution function
is used in the present study and is defined by
f ðn; x; tÞ ¼ mF ðn; x; tÞ; ð1Þ
where m is the mass of a molecule. Once the distribution function, f, is known, its moments with respect to n

can be determined. For example, the density, q, and the momentum, qui, can be obtained from
q ¼
Z

f dn and qui ¼
Z

nif dn; ð2Þ
where ni represents the particle velocity. An intrinsic or peculiar velocity is introduced as
ci ¼ ni � ui ð3Þ
so that the moments with respect to ui can be conveniently calculated.
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In the method of moments, a set of N moments are used to describe the state of the gas through
qi1i2......iN ¼
Z

ci1 ci2 . . . . . . ciN f dn: ð4Þ
The first 13 moments chosen by Grad in the second-moment closure are w ¼ ð1; ni; c2; cicj; c2ci=2Þ, where
c2 ¼ ckck, and the thermal energy, pressure tensor, and heat flux are given by qe, pij, and qi, respectively.
Any moment can be expressed by its trace and traceless part [13–15]. For example, the pressure tensor can
be separated as follows:
pij ¼ pdij þ phiji ¼ pdij þ rij ¼
Z

cicjf dn; ð5Þ
where dij is the Kronecker delta function, p ¼ pkk=3 is the pressure, and rij ¼ phiji is the deviatoric stress tensor.
The angular brackets denote the traceless part of a symmetric tensor. Furthermore, the thermal energy density
is given by
qe ¼ 3

2
q

k
m

T ¼ 1

2

Z
c2f dn: ð6Þ
The temperature, T, is related to the pressure and density by the ideal gas law, p ¼ qðk=mÞT ¼ qRT , where k is
Boltzmann’s constant and R is the gas constant. The heat flux vector is
qi ¼
1

2

Z
c2cif dn: ð7Þ
Multiplying Boltzmann’s equation by w and integrating over velocity space for Maxwellian molecules yields
the 13 moment equations [13]:
oq
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þ oquk

oxk
¼ 0; ð8Þ
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; ð12Þ
where l is the viscosity. Eqs. (8)–(10) are the conservation laws for mass, momentum, and energy, where the
values of rij and qi are determined from their governing equations. However, mijk, Rij, and D, appearing in Eqs.
(11) and (12), are unknowns and correspond to
mijk ¼ qhijki; Rij ¼ qhijirr � 7RTrij; and D ¼ qrrss � 15pRT : ð13Þ
Closure procedures are therefore required to build constitutive models for the terms appearing in Eq. (13) and
the approaches followed by Grad [7] and Struchtrup and Torrilhon [13] will be briefly described.

2.1. Grad’s closure: G13 moment equations

Grad [7] expanded the distribution function, f, in Hermite polynomials about the local equilibrium Max-
wellian. The third-order approximation of the distribution function, f (3), was used by Grad to close the set
of moment equations at the second moment level i.e.
f ð3Þ ¼ fM 1þ 1

2

rij

pRT
cicj �

1

pRT
ciqi 1� c2

5RT

� �
þ mijk

6pðRT Þ2
cicjck

( )
; ð14Þ
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where fM is the local Maxwellian distribution function given by
fM ¼
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pRT Þ3

q exp � c2

2RT

� �
: ð15Þ
In Grad’s original closure procedure, the term mijk appeared in the molecular phase-density function. This was
resolved by setting the term to zero and Eq. (14) becomes the Grad distribution function:
fG ¼ fM 1þ 1

2

rij

pRT
cicj �

1

pRT
ciqi 1� c2

5RT

� �� �
; ð16Þ
which results in the additional terms appearing in Eq. (13), Rij and D, also being equal to zero.

2.2. Struchtrup and Torrilhon’s closure: R13 moment equations

Instead of using the molecular distribution function to calculate mijk, Rij, and D, Struchtrup and Torrilhon
[13] applied a Chapman–Enskog-like expansion to the governing equations of the higher moments with line-
arized production terms for Maxwell molecules. The zeroth-order approximation, given by mð0Þijk ¼ Rð0Þij ¼
Dð0Þ ¼ 0, corresponds to Grad’s original closure and a first-order approximation was therefore used to correct
the G13 moment equations. Subsequently, Struchtrup [14,15] used an order-of-magnitude approach to achieve
similar approximations that included the nonlinear components in the production terms:
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and these are used to close the set of Eqs. (8)–(12) in the present study. The linear parts of Eqs. (17) and (18)
are given by
mL
ijk ¼ �

2l
q

orhij
oxki

and RL
ij ¼ �

24

5

l
q

oqhi
oxji

: ð20Þ
The terms contained in Eq. (20) were neglected in Grad’s original closure but are important because they pro-
vide the gradient transport mechanism for rij and qi and help to stabilize the 13 moment equations.

3. The fourth-order approximation

The governing equations for the moments of f describe the relationship between the macroscopic quantities
of the flow. However, they do not give details of f itself explicitly but this can be constructed from the values of
its moments as an approximation to the solution of the Boltzmann equation. Grad expanded f in Hermite
polynomials as
f ¼ fM

X1
n¼0

1

n!
aðnÞA H ðnÞA ¼ fM að0ÞH ð0Þ þ að1Þi H ð1Þi þ

1

2!
að2Þij H ð2Þij þ

1

3!
að3Þijk H ð3Þijk þ . . . :

� �
; ð21Þ
where H ðnÞA are the Hermite functions and aðnÞA the coefficients. All of the polynomial coefficients are linear com-
binations of the moments of f. To accurately describe the state of a gas an infinite number of moments is
required to reconstruct the distribution function. However, for gases not too far from equilibrium, a finite
number of moments should provide an adequate approximation. The first five polynomials and their
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coefficients are given in Appendix. Eq. (16) represents the incomplete third-order approximation to f in Her-
mite polynomials, as used by Grad [7], to close the system at the second moment level.

The nonequilibrium effects become stronger as the flow approaches the solid wall. If a higher-order approx-
imation for f were employed near the solid surface, it is anticipated that it would provide an improved descrip-
tion of the near-wall flow. The complete third-order approximation to f, given by Eq. (14), is one option that
can be used to study the flow in the proximity of the wall. In the present study, the distribution function has
been expanded in Hermite polynomials to fourth-order, f(4), and then used to obtain the wall boundary con-
ditions for the moment equations. Making use of Hermite functions and their coefficients, as listed in Appen-
dix, the expression can be written as
f ð4Þ ¼ fM 1þ rij

2pRT
cicj �
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pRT
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5RT

� �
þ mijk
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120pðRT Þ3
þ D

8pRT

#
; ð22Þ
where, /ijkl ¼ qhijkli, represents the fourth moment. Its first-order approximation is given by [15]
/ijkl ¼ �
12

7Cð4Þ00

l
p

Rhij þ 7RTrhij
� � ouk

oxli
�
Y4;0;2

0;00

C
ð4Þ
00

rhijrkli

q
: ð23Þ
In Eq. (23), Cð4Þ00 and Y4;0;2
0;00 are entries in the collision production matrices C

ðnÞ
ab and Yn;r;m

a;bc for the fourth mo-
ment and have values of 1.8731 and �0.3806, respectively, for Maxwell molecules [26].

4. Boundary conditions at the wall

One of the difficulties encountered in any investigation of wall boundary conditions is due to a limited
understanding of the structure of surface layers of solid bodies and of the effective interaction potential of
the gas molecules with the wall. A scattering kernel represents a fundamental concept in gas–surface interac-
tions, by means of which other quantities should be defined [19]. At present, there is no complete set of wall
boundary conditions available in the literature for the 13 moment equations. Maxwell’s boundary condition
[20] is one of the simplest models and it states that a fraction, (1 � a), of gas molecules will undergo specular
reflection while the remaining fraction, a, will be diffusely reflected with a Maxwellian distribution, f w

M, at the
temperature of the wall, Tw. In a frame where the coordinates, (x1, x2, x3), are attached to the wall, with x2

normal to the wall, such that all molecules with n2 < 0 are incident upon the wall and molecules with n2 P 0
are emitted by the wall, Maxwell’s boundary condition can be expressed by [27]
f wðn1; n2; n3Þ ¼
af w

M þ ð1� aÞf ðn1;�n2; n3Þ; n2 P 0

f ðn1; n2; n3Þ; n2 < 0

�
; ð24Þ
and
f w
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qwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pRT wð Þ3

q exp � n2
1 þ n2

2 þ n2
3

2RT w

� �
: ð25Þ
In Eq. (25), qw is the density of the thermalized particles and needs to be determined to ensure that no particles
accumulate on the wall. By definition, the value of any moment at the wall can be obtained from
Z

ci1 ci2 . . . cin f ðn1; n2; n3Þdn ¼
Z

ci1 ci2 . . . cin f wðn1; n2; n3Þdn ð26Þ
Using Eq. (24), Eq. (26) becomes
Z
n2P0

ci1 ci2 . . . cin f ðn1; n2; n3Þdn ¼
Z

n2P0

ci1 ci2 . . . cin ½af w
M þ ð1� aÞf ðn1;�n2; n3Þ�dn ð27Þ
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Since there is no gas flow through the wall, c2 ¼ n2. For ease of presentation, the wall boundary conditions for
2D planar flow, x1 � x2, are presented below. The extension to 3D is straightforward. However, not all of the
moments are restricted by Eq. (24) if f is approximated by a finite number of its moments [7]. Grad considered
the special case of a = 0 and concluded that only moments that are odd functions of n2 can be used to con-
struct the wall boundary conditions. This limits the choice of moments to w ¼ ðc2 c1c2 c2c2 c1c1c2 c2c2c2c2

c1c2c2c2 c2c1c2 c4c2Þ. Replacing f in Eq. (27) with its fourth-order approximation, f (4), gives the following
set of wall boundary conditions:
qw

ffiffiffiffiffiffiffiffiffi
RT w
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RT
p ; ð28Þ
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� 30R22 þ 7D
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; ð36Þ
and u1s is the slip velocity relative to the wall. In the derivation of the above set of wall boundary conditions,
Eq. (28) has been used to eliminate qw in Eqs. (29)–(35).

4.1. Calibration of the boundary values

In deriving the boundary conditions, given by Eqs. (29)–(35), the distribution function has been constructed
using a finite number of moments. Consequently, the values of some moments at the wall are underestimated
and others are overestimated due to the effect of the Knudsen layer [1]. To compensate for this necessary sim-
plification, empirical correction factors, buðu ¼ u; T ; r11; r22; r12; q1; q2Þ have been introduced into the bound-
ary conditions. This type of approach has been used before to correct the slip-velocity and temperature jump
for the Navier–Stokes equations [1,27–31].

The values of the coefficients, bu, can be determined either from solutions of the Boltzmann equation or
from DSMC calculations. The latter approach has been adopted in the present study using planar Couette
flow as the test case. Although geometrically simple, it exhibits all the important flow phenomena and can
readily be used to find the values of bu. The DSMC code developed by Bird [3] has been used for the simu-
lations and was modified to obtain all moments involved in the boundary conditions to enable the values of
buðu ¼ u; T ; r11; r22; r12; q1; q2Þ to be determined from Eqs. (29)–(35).
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Planar Couette flow represents a classical problem in rarefied gas dynamics and it has often been used to
investigate features such as velocity-slip, temperature jump and Knudsen layers [32–34]. In the present study,
the coordinates are chosen such that the upper plate moves with velocity uw in the x1 direction and x2 is the
direction perpendicular to the plates. The lower plate remains stationary. The variable hard sphere (VHS)
model for argon has been employed with the gas constant R = 208 J/kg K. Both plates have a fixed wall tem-
perature, Tw = 273 K, and values of the wall velocity were 50, 100, 300, 600 and 1000 m/s. The Knudsen num-
ber for this problem was defined as Kn ¼ k=L, where L is the distance between the two infinite parallel plates
and the molecular mean free path is given by
k ¼ l
p

ffiffiffiffiffiffiffiffiffi
pRT

2

r
: ð37Þ
The wall temperature, Tw, and the initial pressure have been used as reference values to estimate k. Seven
Knudsen numbers, ranging from 0.012 to 1.0, were investigated in the DSMC simulations to estimate the val-
ues of bu. The viscosity was obtained from Sutherland’s law [35]
l ¼ l0

T
T 0

� �1:5 T 0 þ S
T þ S

; ð38Þ
where the reference viscosity and temperature are, l0 ¼ 21:25� 10�6 Pa s and T 0 ¼ 273 K, respectively, and
Sutherland’s constant, S = 144 K, for argon. The accommodation coefficient, a, was assigned a value of unity
i.e. fully diffuse reflection has been assumed for both walls.

5. The numerical method

The thirteen moment equations have often been used to study shock structures where the flows are hyper-
bolic in nature [12,18,25]. In the case of low-speed rarefied gas flow, such as those found in micro-devices, the
system is parabolic or elliptic. Using a hyperbolic flow solver to solve elliptic flows is inefficient and expensive.
Regularization of Grad’s 13 moment equations introduces gradient transport terms into the governing equa-
tions for the stress and heat flux. However, the gradient transport mechanisms for momentum and energy are
implicitly included in the stress and heat flux terms and are not explicitly expressed in the momentum and
energy equations. This imposes great difficulties in solving the set of R13 moment equations numerically with
a finite volume (FV) method, particularly for confined and steady-state flows. Since the gradient transport
mechanisms of momentum and energy are represented by the first-order approximations of stress and heat
flux
rð1Þik ¼ �2l
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oxki
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4
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; ð39Þ
it is possible to define the stress and heat flux deviators as
qgik ¼ rik � rð1Þik and qhk ¼ qk � qð1Þk ; ð40Þ

where gik and hk denote the specific stress and heat flux deviators, respectively. Eq. (40) can be inserted into
Eqs. (17) and (18) to give
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Fig. 1. Determination of the correction factors, bu, for the 13 moment wall boundary conditions. Symbols represent values obtained from
DSMC calculations of planar Couette flow for five different wall velocities. The solid lines indicate values used in the present study.
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Table 1
Correction factors bu for wall boundary conditions

u u T r11 r22 r12 q1 q2

bu 0.97 0.94 1.0 0.65 1.36 0.94 1.22
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Using Eqs. (39)–(42), it is possible to rewrite Eqs. (9)–(12) in a steady-state form as follows
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Eqs. (45) and (46) are similar to the Navier–Stokes–Fourier equations but with extra terms underlined on
the right-hand side that account for any rarefaction effects and can be determined from Eqs. (47) and (48).
These equations can be expressed in a general conservative form as:
oqukU
oxk

convective term
�

o

oxk

l
CU

oU
oxk

� �
diffusive term

¼ SU

source term
; ð49Þ
in which, U ¼ ðui; T ; gij; hiÞ, CU ¼ ð1; 2=5; 3=2; 5=6Þ, and SU ¼ ðSui ; ST ; Sgij
; ShiÞ corresponds to the right hand

terms of Eqs. (45)–(48) respectively. This set of equations is now in a conventional convection-diffusion format
with appropriate source terms. The numerical algorithm for solving Eq. (49) has been well documented in
many CFD textbooks, such as the one by Ferziger and Perić [36], and has been implemented in a finite volume
in-house code, THOR, in the present study. The diffusive and source terms are discretized by a central differ-
ence scheme. For the convective terms, a range of upwind schemes including QUICK [37], SMART [38], and
CUBISTA [39] are available in THOR and the CUBISTA scheme was selected for the present study. The cou-
pling of the velocity and pressure fields is through the SIMPLE algorithm [40]. A collocated grid arrangement
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is used in THOR and the interpolation scheme of Rhie and Chow [41] is used to eliminate any resultant non-
physical pressure oscillations. The system of 13 moment equations is solved iteratively and the solution pro-
cedure can be summarized as follows:

1. Calculate ui at iteration n + 1 using the values of other variables at the previous iteration n.
2. Solve the pressure correction equation using the SIMPLE algorithm to update p and ui at iteration n + 1.
3. Calculate T, gij and hi at iteration n + 1 using updated pressure and velocity fields.
4. Return to step 1 and repeat until residuals of each governing equation reaches a specified convergence

criterion.

6. Results and discussion

Figs. 1a–g present the results of b/ from the DSMC simulations for five wall velocities over a range of
Knudsen numbers. Due to the stochastic nature of the DSMC method, the data are scattered but generally
lie around a particular value, with weak dependency on the Knudsen number studied. Figs. 1a and b show
that the correction factors for slip-velocity and temperature jump, bu and bT, respectively, are close to unity
when Kn > 0.1. These particular factors have been the subject of many previous investigations [1,28–31]. In
particular, Figs. 1a and b show results obtained from the solution of the linearized Boltzmann equation
[1,28,31] which yielded values of 1.1446 and 1.1682 for bu and bT, respectively. These values compare well
to the DSMC predictions for Kn = 0.012 but tend to overpredict at higher Knudsen numbers. In the present
approach, this corresponds to retaining just the first terms in Eqs. (29) and (30), and neglecting all the higher
moments i.e. previous work essentially used a first-order approximation for the shear stress and heat flux terms
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to derive the values of bu and bT. The authors are not aware of any theoretical or numerical values of the cor-
rection factors for wall stresses and heat fluxes that contain the higher-order moments.

The solid lines shown in Fig. 1 are the values of bu used for the solution of Eqs. (8)–(12) in the present
study. The DSMC data has strongly guided the analysis but the coefficients have been further optimized from
the solution of the R13 equations for Couette flow. One particular feature of planar Couette flow is having a
constant shear stress throughout the domain. Fig. 1e shows that the value of br12

required to obtain a constant
shear stress, r12, for the R13 equations is significantly above the value predicted by the DSMC results. The
difficulty is clearly highlighted in Fig. 2 which shows how the predicted shear stress varies with different values
of br12

. The reason for the non-constant behavior is due to the occurrence of the term m122 in Eqs. (11) and
(33). As the Knudsen number increases, this term becomes very nonlinear and is poorly predicted at the wall
and its impact will be discussed later. The best fit was for br12

¼ 1:36 and a complete list of the values of bu

used to solve the R13 equations are listed in Table 1.
The DSMC results showed a similar variation with Knudsen number for all values of wall velocity considered

in this study. Consequently, only results for uw =100 m/s will be presented and discussed. The NSF and R13
equations were solved using an in-house finite-volume CFD code, THOR, and the velocity slip and temperature
jump boundary conditions for the NSF equations have been taken from Cercignani [1]. For the 1D Couette flow
in the present study, 200 equi-spaced grid points have been used in the solution domain, which was sufficient for
grid independent solutions to be achieved. The computed values of tangential velocity (u1) and temperature are
presented in Figs. 3 and 4 for Kn = 0.012, 0.1 and 0.5, respectively. At Kn = 0.012, Figs. 3a and 4a show that
both hydrodynamic models give almost identical values for both velocity and temperature. The values of u1

from the NSF and R13 equations are in very good agreement with the DSMC data but, although the hydrody-
namic models give the correct temperature jump, they appear to overpredict the maximum value of tempera-
ture. However, there is significant difficulty in reducing the thermal noise associated with the DSMC
simulation at such a low Knudsen number. As Kn increases to 0.1, both the R13 and NSF equations start to
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slightly overpredict the velocity slip. Fig. 3b shows that the predicted values of u1 from the R13 equations are in
better agreement with the DSMC data than the NSF results whereas Fig. 4b indicates that the R13 and NSF
equations slightly overpredict the temperature jump. Overall, the values of T from the R13 are in closer agree-
ment with DSMC than those from NSF. At Kn = 0.5, well into the transition regime, Figs. 3b and 4b illustrate
that the values of u1 and T from the NSF equations deviates substantially from the DSMC results whilst those
from the R13 are in general agreement with the DSMC data apart from near wall region. The overprediction of
temperature from the R13 equations at Kn = 0.5 can be attributed to the incorrect shear stress.
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The temperature shown in Fig. 4 is defined in Eq. (6), which includes energy components in the three spatial
dimensions. A separate temperature field in each individual direction can also be defined [3]. For example,
temperatures T1 and T2 in the x1 and x2 directions, respectively, are defined by
2

q
k
m

T 1 ¼
Z

c2
1f dn and q

k
m

T 2 ¼
Z

c2
2f dn: ð50Þ
From the above definitions, it is straightforward to obtain the following relationships:
T 1 ¼ T þ r11

qR
and T 2 ¼ T þ r22

qR
: ð51Þ
The profiles of T1 and T2 predicted by the R13 equations are shown in Fig. 5 and compared with the DSMC
results for different values of Kn. At Kn = 0.012, the computed values of T1 and T2, from both the R13 equa-
tions and DSMC, are in close agreement. Each temperature field has the same value because the flow is very
close to equilibrium and any rarefaction effects are therefore weak. When the value of Kn is greater than 0.1,
the temperature in each direction is different, as clearly shown in Figs. 5b and 5c, with T1 > T > T2 i.e. the
temperature parallel to the walls is higher than that perpendicular to the walls. This is because the values
of the normal stresses, r11 and r22, are no longer zero.

Figs. 6 and 7 show the computed values of normal stresses r11 and r22, and shear stress r12, from both
DSMC and hydrodynamic models for several Knudsen numbers. At Kn = 0.012, shown in Fig. 6a, both
the R13 and NSF equations produce a value of zero for r11 and r22 whilst those from the DSMC simulation
are scattered around a value of zero. Fig. 7a illustrates that the values of r12 computed from the three
approaches are also in close agreement. At Kn = 0.1 and 0.5, the DSMC results demonstrate that both r11

and r22 are no longer zero. As shown in Figs. 6b and 6c, the R13 equations are able to capture this departure
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from equilibrium reasonably well, apart from very close to the wall. It is interesting to note that the predicted
values of shear stress from the NSF equations are in better agreement with the DSMC data than those from
the R13 equations, as shown in Figs. 7b and 7c, but it must be remembered that the values for r12 predicted by
the NSF equations are evaluated from incorrect velocity profiles. The poor shear stress prediction has also
been observed by Struchtrup [17] who used the superposition approach to obtain values of r12 from the
R13 equations.

For planar Couette flow, Eq. (11) for the shear stress can be reduced to
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The values of the terms A, B, and C in Eq. (52) are shown in Fig. 8 for Kn = 0.1 with br12
¼ 1:1 and br12

¼ 1:36,
respectively. When br12

¼ 1:1, term C is negligible in comparison to the other two terms, whilst A and B change
dramatically as the wall is approached but in opposite directions due to the nonlinearity of the velocity profile
in the regions near the wall, as indicated by the broken line curve in the enlarged part of Fig. 3b. However, the
rate of change of A is lower than for term B, which results in the broken line curve in Fig. 2. To correct this, a
value larger than the DSMC results suggest was given to br12

. This increased the magnitude of the shear stress
and slip velocity, but also reduced the nonlinearity of the velocity profile. With br12

¼ 1:36, each term in Eq.
(52) changes smoothly and results in a uniform value of r12, as shown in Fig. 2 by the solid line.

An interesting nonequilibrium phenomenon that occurs in planar Couette flow is the appearance of a
heat-flux without the presence of a temperature gradient. If the upper and lower walls are held at a fixed
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Fig. 11. Profiles of m122 for Couette flow with Tw = 273 K and uw = 100 m/s.
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temperature, Tw, the NSF equations predict that the tangential heat flux, q1, is zero for any value of Knudsen
number. Fig. 9a presents the normal and tangential heat fluxes for Kn = 0.012. Statistical scatter is evident in
the DSMC data but both continuum approaches show the correct trend, although the R13 equations do pre-
dict a small amount of tangential heat flux very close to the wall. At the upper continuum limit (Kn = 0.1), a
significant amount of tangential heat flux is predicted, as shown in Fig. 9b. This feature is captured quite well
by the R13 equations but the NSF equations completely fail to predict this aspect of the flow. At Kn = 0.5,
Fig. 9c shows that the predicted values of tangential heat flux from the R13 equations still closely follow
the DSMC data. In contrast, Figs. 9a and b indicate that the normal heat flux is captured well by both con-
tinuum-based schemes up to Kn = 0.1. However, beyond this value, Fig. 9c shows that the NSF equations
start to underpredict the DSMC data.

The ability of the 13 moment equations to accurately capture stresses at large values of Knudsen number
will clearly be affected by the approximation of the moment terms mijk, Rij and D. Grad [7] assumed
mijk ¼ Rij ¼ D ¼ 0 whilst Struchtrup [15] derived a first-order approximation. At Kn = 0.012, the values of
m112, m222 and m122 are very close to zero, as illustrated in Figs. 10a and 11a. These predictions are supported
by the DSMC data which indicates that these third moments are scattered around zero. At this low value of
Knudsen number, the contribution of mijk in Eq. (11) is therefore negligible. However, as the value of Kn starts
to increase, the contribution of mijk becomes progressively more important. Figs. 10b and 10c compare the
R13 and DSMC predictions for Kn = 0.1 and 0.5, respectively. At the continuum limit, the first-order approx-
imation of mijk provides a reasonable estimate for both m112 and m222 and certainly captures the correct trend.
Unfortunately, the behavior of m122 is not predicted very well, particularly near the wall for either value of
br12

(1.1 or 1.36), as shown in Fig. 11b. As the degree of rarefaction is increased, the weakness of the first-order
approximation becomes very apparent. Fig. 10c illustrates that the behaviors of m112 and m222 are captured
quite well in comparison with DSMC results. However, the scale of the problem is clearly reflected in the fact
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that the m122 term consistently predicts a value close to zero. The direct consequence of these results is that the
stresses, given in Eq. (11), do not agree with the DSMC data at larger values of the Knudsen number.

Comparisons of the predicted values of R12 and R22 with DSMC data are shown in Fig. 12 for different
values of the Knudsen number. Fig. 12a shows that when Kn = 0.012, R22 is close to zero, consistent with
DSMC data, which is also scattered around zero, but the R13 equations and the DSMC results appear to pre-
dict a small but finite value for R12. As the value of the Knudsen number increases to 0.1 and above, Figs. 12b
and c indicate that the values of both R12 and R22 start to depart from zero. Although Eq. (18) generally fol-
lows the trend of the DSMC results, the magnitude of both R12 and R22, are not predicted particularly well.

The results imply that the first-order approximation of mijk and Rij significantly improves Grad’s original
assumption but a higher-order approximation is probably required to more accurately close the 13 moment
equations and successfully model flows further from the slip-flow regime.

7. Conclusions

A numerical method for solving the regularized 13 moment equations has been proposed. To enable con-
fined flows to be modeled, a complete set of wall boundary conditions for the 13 moment equations has been
derived, based on the Maxwell wall-boundary model and a fourth-order approximation of the molecular dis-
tribution function in Hermite polynomials. Empirical correction factors were introduced into the wall bound-
ary conditions to account for Knudsen layer effects and were calibrated with direct simulation Monte Carlo
data. Computational results of planar Couette flow over a range of wall velocities and Knudsen numbers
showed that the R13 equations recovered the continuum solution at small values of the Knudsen number
(60.012) and performed much better than the Navier–Stokes–Fourier equations for velocity, temperature,
and heat flux at Knudsen numbers above 0.012.

The limitation of a first-order approximation to the third moment, mijk, was highlighted and this truncation
leads directly to the R13 equations predicting a non-constant shear stress as the degree of rarefaction
increases. This error was partially accounted for by introducing a coefficient that was higher that the value
obtained from direct simulation Monte Carlo data. However, it was also observed that the magnitude of both
R12 and R22, are not predicted particularly well at higher Knudsen numbers. It is clear that the first-order
approximation of mijk and Rij brings many improvements to Grad’s original assumption but a higher-order
approximation is probably required for the 13 moment equations to successfully model flows that depart fur-
ther from the slip-flow regime. Alternatively, a transport equation could be introduced for the mijk term but
this would have the disadvantage of requiring additional wall-boundary conditions.
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Appendix

The expressions of the polynomials and their associated coefficients used in Section 3 to derive the fourth-
order approximation of the molecular distribution function, f (4), are [7]:
H ð0Þ ¼ 1;H ð1Þi ¼
ciffiffiffiffiffiffiffi
RT
p ;H ð2Þij ¼

cicj

RT
� dij;

H ð3Þijk ¼
cicjckffiffiffiffiffiffiffi

RT
p� �3

� cidjk þ cjdik þ ckdijffiffiffiffiffiffiffi
RT
p ;

H ð4Þijkl ¼
cicjckcl

RT 2
� cicjdkl þ cickdjl þ cicldjk þ cjckdil þ cjcldik þ ckcldij

RT
þ dijdkl þ dikdjl þ dildjk

� �

8>>>>>>><
>>>>>>>:

ðA:1Þ
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and
að0Þ ¼ 1; að1Þi ¼ 0; að2Þij ¼
rij

p
;

að3Þijk ¼
qijk

p
ffiffiffiffiffiffiffi
RT
p ;

að4Þijkl ¼
qijkl

pRT
� rijdkl þ rikdjl þ rildjk þ rjkdil þ rjldik þ rkldij

p
� dijdkl þ dikdjl þ dildjk

� �
;

8>>>>>><
>>>>>>:

ðA:2Þ
respectively. The trace and traceless parts of the moments are
qijkl ¼ qhijkli þ
1

7
ðqhijirrdkl þ qhikirrdjl þ qhilirrdjk þ qhjkirrdil þ qhjlirrdik þ qhklirrdijÞ

þ 1

15
ðdijdkl þ dikdjl þ dildjkÞqrrss: ðA:3Þ

qijk ¼ qhijki þ
2

5
qidjk þ qjdik þ qkdij

� �
: ðA:4Þ
Using Eq. (13) and qhijkli ¼ /ijkl, it can be shown that
að0ÞH ð0Þ ¼ 1; að1Þi H ð1Þi ¼ 0; að2Þij H ð2Þij ¼
rijcicj

pRT
;

að3Þijk H ð3Þijk ¼
mijkcicjck

pðRT Þ2
þ 6c2ciqi

5pðRT Þ2
� 6ciqi

pRT
;

að4ÞijklH
ð4Þ
ijkl ¼

/ijklcicjckcl

pðRT Þ3
þ 6c2Rijcicj

7pðRT Þ3
� 6Rijcicj

pðRT Þ2
� 2c2D

pðRT Þ2
þ c4D
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